QUARKUS
VS
SPRING BOOT

The Ultimate Framework Comparison

Cloud-Native + Microservices +* Performance

suddo.io

I B HISTORY AND CONTEXT |

Spring Boot: A Pillar of Java Development

Spring Boot was launched in 2014 as an extension of the Spring Framework. It quickly gained
popularity by simplifying the configuration and development of Java applications, offering a
convention-over-configuration programming model. The goal was clear: reduce the complexity of
creating Spring applications by providing a production-ready framework.

Spring Boot is widely adopted in enterprise projects due to its robust ecosystem and the Java
community's familiarity with the Spring Framework. Large and small companies alike rely on Spring
Boot for business-critical applications due to its maturity and rich library of integrations.

Quarkus: Optimized for Cloud and Containers

Quarkus was launched in 2819 by Red Hat with a specific goal: to be the most efficient Java
framework for the cloud-native era. It was designed to be extremely fast, lightweight, and ideal
for microservices and container environments. With the advent of Kubernetes-based and serverless
architectures, Quarkus stood out for its focus on performance and reduced memory footprint.

Unlike Spring Boot, which evolved from an older framework, Quarkus was built from the ground up
with modernity in mind. It introduces concepts like huild-time processing and deep integration
with GraalVM, enabling the compilation of applications into native bhinaries, promising extremely
fast startup times and efficient resource usage.

Key Timeline

2014 — Spring Boot 1.0 released (Spring Framework maturity)
2019 — Quarkus 1.0 released (Cloud-native focus)

2020 — Spring Native experimental (response to Quarkus)
2022 — Quarkus 2.x (production-grade native compilation)
2023 — Spring Boot 3.x (native support with GraalVM)

I suddo.io 2 |

T ARCHITECTURE AND DESIGN

Spring Boot

Spring Boot is based on the architecture of the Spring Framework, which means it inherits all the
features of dependency injection, aspect-oriented programming (AOP), and reactive programming,
along with strong integration with patterns 1ike MVC, REST, and many others.

Auto-configuration: Spring Boot attempts to automatically configure application components
based on the dependencies present on the classpath. This allows developers to focus more on
business logic.

Spring Actuator: Provides ready-to-use monitoring and metrics, giving a clear view of
application performance and health.

Profiles: Allows different configurations for different environments (development, testing,
production), making it easier to migrate applications across these environments.

Spring Cloud: An extension of the Spring ecosystem that simplifies microservices development
with well-defined patterns like distributed configuration, service discovery, and API gateways.

Quarkus

Quarkus adopts a much more modular and lightweight architecture, using technologies like
MicroProfile, a specification offering APIs for microservices development, and integrating deeply
with GraalVM.

Build-Time Processing: Quarkus performs most of the work at compile time rather than at
runtime, meaning the application is pre-processed and optimized before it runs.

Quarkus Extensions: Modularity is one of Quarkus's strengths. Extensions can he added as needed
without loading unnecessary components, keeping the application lightweight.

Native Compilation: With native support for GraalVM, Quarkus can compile Java applications into
native executables, resulting in extremely fast startup times and low memory usage.

Reactive Programming: Quarkus is oriented towards reactive programming, making it especially
useful in applications that need to handle a large number of simultaneous connections or
require high I/0 performance.

I suddo.io 3 |

s PERFORMANCE COMPARISON

Startup Time

Spring Boot

The startup time of a Spring Boot application
tends to be longer due to its traditional
approach of runtime configuration. In a typical
application, Spring Boot needs to configure all
components, perform dependency injections, and
process auto-configurations.

Typical: 2-10 seconds
Large apps: 30+ seconds

Quarkus

Quarkus does most of the work at compile time.
This means the application is already optimized
and ready to run as soon as it is launched. In
environments where startup time is critical
(serverless, scaling microservices), this
difference is decisive.

JVM mode: 0.5-2 seconds
Native: 0.01-08.1 seconds

Memory Consumption

Spring Boot

A Spring Boot application generally consumes
more memory, especially in scenarios where many
features are loaded automatically, even if they
are not needed. This can be a problem in
resource-limited environments, such as low-
memory containers.

Typical: 200-500 MB
With features: 500 MB-1 GB+

Quarkus

Due to compile-time processing and the ability
to create native binaries, Quarkus can
significantly reduce memory consumption.
Quarkus applications are designed to be
lightweight, ideal for container and cloud
environments where resource efficiency is a
priority.

JVM mode: 70-150 MB
Native: 20-50 MB

Runtime Performance

Spring Boot

During runtime, Spring Boot is guite efficient,
but it carries some overhead due to its
flexibility and support for a wide range of
features and libraries. In large-scale
applications, performance may suffer unless
specific optimizations are made.

Quarkus

Quarkus excels in runtime performance,
especially in scenarios requiring high
concurrency and low response times. Its
reactive nature and ability to eliminate
runtime overhead make it a strong choice for
applications demanding extreme performance.

suddo.io

2 DEVELOPMENT EASE

Tools and Ecosystem

Spring Boot Quarkus

One of Spring Boot's strengths is its vast Although Quarkus is newer, it also offers good

ecosystem and support for development tools. support for development, with extensions for

IDEs 1like IntelliJ IDEA and Eclipse have robust various IDEs and a CLI that simplifies the

support for Spring, with plugins that make creation of new projects and the addition of

development, debugging, and testing easier. extensions.

Spring Boot offers a rich collection of However, due to its youth, the ecosystem is not

starters and libraries, allowing developers to as vast as Spring Boot's, which may limit

add features like security, database options for developers needing very specific

integration, and messaging with ease. features.

Learning Curve
Spring Boot TETN

For developers already familiar with the Spring Quarkus presents a steeper learning curve for

Framework, the learning curve for Spring Boot developers coming from traditional Java

is relatively Llow. environments. The need to understand concepts
like build-time processing and reactive

However, for new developers, the complexity of programming may require additional learning

Spring can be intimidating, and the initial effort.

configuration may require a good understanding

of the Spring ecosystem. But for developers focused on cloud-native
environments, the investment may be worth it.

IDE Support Comparison

Spring Boot: Excellent support in IntelliJ IDEA Ultimate, Eclipse STS, VS Code (Spring
Tools)

Quarkus: Good support in IntelliJ IDEA, VS Code (Quarkus Tools), Eclipse with Red Hat
plugins

suddo.io

\\ £y

INTEGRATION WITH EXTERNAL TECHNOLOGIES

Database

Spring Boot

Spring Boot has built-in support for a wide
With Spring Data, database integration and
JPA

MongoDB
Redis

Spring Data
Spring Data
Spring Data
Spring Data Elasticsearch
R2DBC (reactive)

I S T

range of databases, both relational and NoSQL.

manipulation become simpler and more powerful.

Quarkus

Quarkus offers database support through
Hibernate ORM and Panache but may not have as
many out-of-the-box integrations as Spring
Boot.

v Hibernate ORM with Panache
+ Hibernate Reactive

+ MongoDB client

v Neo4j client

However, Quarkus extensions are designed to be
lightweight and efficient.

Microservices and Distributed Architectures

Spring Boot

Spring Boot is widely used in microservices
architectures, especially when combined with
Spring Cloud. It offers tools for:

« Distributed configuration

« Service discovery (Eureka)

« Circuit breakers (Resilience4j)

+ API Gateway (Spring Cloud Gateway)
« Load balancing (Ribbon)

Making it easier to build robust and scalable
systems.

Quarkus

Quarkus, with its focus on being cloud-native,
is also a strong choice for microservices. It
is compatible with MicroProfile.

« Config (MicroProfile Config)

» Health checks (MicroProfile Health)

« Metrics (MicroProfile Metrics)

+ Fault tolerance (SmallRye Fault Tolerance)
+ REST Client (MicroProfile REST Client)

Extremely resource-efficient, ideal for
Kubernetes.

suddo.io

"7 USE CASES

When to Choose Spring Boot

Complex Enterprise Applications: If you're building an application with complex enterprise
requirements that need a wide range of out-of-the-box features, Spring Boot is a natural
choice. The maturity of the ecosystem and support for deep integrations with enterprise
technologies make Spring Boot ideal for these scenarios.

Projects with Experienced Spring Teams: If your team already has experience with the Spring
Framework, using Spring Boot can significantly reduce development time and avoid a steep
learning curve.

Need for Tool and Plugin Support: If you rely on tools and plugins with robust support for
Spring Boot, this may be the most pragmatic choice.

Rich Ecosystem Requirements: When you need deep integration with various third-party libraries
and frameworks that have mature Spring Boot starters.

Long=-running Applications: Applications that run for extended periods where startup time is
less critical than runtime stability and ecosystem maturity.

When to Choose Quarkus

Cloud-Native Applications: If you're developing for cloud-native environments or serverless
architectures, Quarkus offers the best performance in terms of startup time and memory usage.

Microservices and Containers: Quarkus is ideal for microservices that need to scale quickly,
especially in Kubernetes environments. The resource efficiency and ability to compile into
native binaries make it the ideal choice for lightweight containers.

Performance-Focused Projects: If performance is a priority, especially in terms of response
time and the ability to handle high concurrency, Quarkus offers significant advantages.

Cost Optimization: Lower memory footprint means lower cloud infrastructure costs, especially
when running hundreds or thousands of container instances.

Reactive Applications: Applications that need to handle thousands of concurrent connections
with non-blocking I/0.

I suddo.io 7 |

OPTIMIZATION STRATEGIES

Spring Boot Optimization

Lazy Initialization: Enable lazy initialization of beans to improve startup time by loading
beans only when necessary.

Configuration

spring.main. lazy—-initialization=true

Customizing Auto-Configuration: Disable unnecessary auto-configurations to reduce memory usage
and improve performance.

Example

@SpringBootApplication(exclude = {
DataSourceAutoConfiguration.class,
HibernateJpaAutoConfiguration.class

H

Spring Native: Consider using Spring Native to compile the application into native binaries,
reducing startup time and memory usage.

Quarkus Optimization

Quarkus Extensions: Use Quarkus extensions sparingly to ensure only what's needed is included
in the application, keeping it lightweight and efficient.

Add extensions selectively

./mvnw quarkus:add—-extension —-Dextensions="hibernate—-orm—panache"
Native Compilation with GraalVM: Compile the application into a native binary using GraalVM to

take full advantage of runtime optimizations.

Build native image

./mvnw package —Pnative
Result: 20-50 MB binary, ©.01s startup, 30-50 MB RSS

Reactive Programming: Leverage Quarkus's reactive nature to build applications that can scale
efficiently and handle a large number of simultaneous reguests.

suddo.io

I M PERFORMANCE METRICS

Real-World Benchmark: Simple REST API
Spring Boot 3.x (JVM):

» Startup: 2.5 seconds
* Memory (RSS): 250 MB
+ JAR size: 35 MB

* First request: ~50ms

Spring Boot 3.x (Native):
» Startup: 0.08 seconds

+ Memory (RSS): 80 MB

* Binary size: 75 MB

» First request: ~10ms

Quarkus (JVM):

+ Startup: 1.2 seconds
« Memory (RSS): 120 MB
+ JAR size: 15 MB

* First request: ~20ms

Quarkus (Native):

« Startup: 0.016 seconds
» Memory (RSS): 35 MB

+ Binary size: 45 MB

* First request: ~5ms

Cost Analysis (Cloud Deployment)

Assuming 100 microservice instances running 24/7 on AWS ECS Fargate:

Spring Boot (JVM):
* Memory per instance: 512 MB
+ Monthly cost: ~$1,500

Quarkus (Native):
+ Memory per instance: 128 MB (0.25 vCPU)

+ Monthly cost: ~$400

® Savings: ~$1,100/month (~73% reduction)

Serverless Comparison (AWS Lambda)

pring Boot: suddo.io
+ Cold start: 5-15 seconds
+ Memory required: 1024 MB minimum

« Cost impact: Hiagh (billed for caold start duration)

FEATURE COMPARISON MATRIX

Feature

Spring Boot

Quarkus

Maturity

Startup Time (Native)

Memory (Native)

Native Compilation

Developer Experience

Hot Reload

Community Size

Third-party Integrations

Cloud-native Focus

Kubernetes Integration

Reactive Support

Database Support

Testing Support

Documentation

Learning Curve

Best For

Excellent (10+ years)

~80ms

~80 MB

Experimental (3.x)

Excellent

DevTools

Very Large

Extensive

Good

Spring Cloud K8s

Spring WebFlux

Extensive

Excellent

Comprehensive

Moderate

Enterprise apps, Spring teams

suddo.io

Good (5+ years)

~16ms

~35 MB

Production-ready

Excellent

Dev Mode

Growing

Good

Excellent

Native K8s support

Mutiny (built-in)

Good

Excellent

Comprehensive

Moderate-Steep

Cloud-native, microservices

10

© MIGRATION CONSIDERATIONS

Spring Boot to Quarkus Migration

Migrating from Spring Boot to Quarkus requires understanding the differences in architecture and
replacing Spring-specific components with Quarkus equivalents.

Common Replacements
Spring Boot Quarkus Equivalent
@SpringBootApplication @QuarkusMain (if needed)
@RestController @Path + @ApplicationScoped
@Autowired / @Inject @Inject (CDI)
Spring Data JPA Hibernate Panache
@ConfigurationProperties @ConfigProperty
Spring Security Quarkus Security + 0IDC
Spring WebFlux Mutiny (reactive streams)
Spring Cloud Config MicroProfile Config
Spring Actuator MicroProfile Health/Metrics

Migration Challenges

Reflection Limitations: Native compilation requires explicit reflection configuration for
classes used reflectively.

Dynamic Class Loading: Features relying on runtime class loading need build-time registration.

Third-party Library Compatibility: Not all Spring-compatible libraries work with Quarkus native
mode.

Testing Adjustments: Test frameworks and mock libraries may need updates for native
compilation.

Migration Best Practices

Start Small: Migrate one microservice at a time, not the entire monolith.
JVM Mode First: Test in JVM mode before attempting native compilation.
Use Quarkus Extensions: Leverage official extensions instead of raw dependencies when possible.

Test Native Mode: Build and test native binaries early to catch compatibility issues.

suddo.io 11

@ FINAL CONSIDERATIONS

The choice between Spring Boot and Quarkus should be guided by the specific needs of the project
and the goals for performance and scalability.

Choose Spring Boot If:

v You need the most mature and extensive ecosystem in Java
v Your team has existing Spring Framework experience

v You require deep integration with enterprise technologies
v Startup time and memory footprint are not critical

v You need the widest selection of third-party integrations

v You're building traditional monolithic or modular applications

Choose Quarkus If:

v You're building cloud-native or serverless applications

v Startup time and memory usage are critical requirements

v You need to optimize cloud infrastructure costs

v Your architecture is focused on Kubernetes and containers
v You want reactive programming as a first-class citizen

v You're willing to invest in learning new patterns for hetter performance

The Hybrid Approach

Many organizations use both frameworks strategically:

* Spring Boot for complex, long-running services with rich business logic
* Quarkus for edge services, API gateways, and freguently-scaling microservices

This allows teams to leverage the strengths of each framework where they matter most.

Regardless of which framework you choose, it is essential to understand its capabilities and
limitations and adopt optimization strategies that maximize your application's performance.

suddo.io 12

READY TO
MASTER
QUARKUS?

Build a Real-World Indoor Tracking Platform
10 Microservices * Event-Driven Architecture
Native Compilation < Native Startup
Kubernetes Deployment < Production Observability

Learn Quarkus the Right Way
Crash course
Real hardware + Production patterns « Expert guidance

quarkus.suddo.io

© 2025 suddo.io - All Rights Reserved

